

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ## Requirements
The minimum requirements that need to be installed before we get started are

	Python 3.7.9

	Java 11.0.12

	NodeJS 16.16.0 LTS

	NPM 8.11.0

	Git 2.33

After this installation, you will need to add the programs to your PATH. Please refer to the guide for
[Linux](https://linuxize.com/post/how-to-add-directory-to-path-in-linux/) or [Windows](https://www.computerhope.com/issues/ch000549.htm)
Validating the install
Open your terminal (Linux) or Command Prompt (Windows) and run the following commands to validate your installation.

On Windows
$> python --version
$> git --version
$> node --version
$> java --version
$> npm --version

On Linux
$> python3 --version
$> git --version
$> node --version
$> java --version
$> npm --version

Installing PyHipster
To install the generator run the following command

npm install -g generator-pyhipster

Creating Your First PyHipster Full-Stack Application

Go to any folder and create the project folder

$> cd my-dir
$> mkdir my-project
$> cd my-project
$> pyhipster

This will start the generator and will ask you a couple of questions to generate the application

![Application Generation](images/application-generation.png)

Please see below for an explanation of each of these questions.

`
? Which *type* of application would you like to create? (Use arrow keys)
> Monolithic application (recommended for simple projects)
`
Explanation - Currently only monoliths are supported. So you just have this one choice.
`
? What is the base name of your application? pyhipster
`
Explanation - Provide a name for your project
`
? Which *type* of authentication would you like to use?
> JWT authentication (stateless, with a token)
HTTP Session Authentication (stateful)
`
Explanation - Select the desired authentication mechanism.
```
? Which type of database would you like to use? (Use arrow keys)
> SQL (SQLite, MySQL, PostgreSQL, Oracle, MS SQL Server)


No database




`
*Explanation* - Select any database type you want
`
? Which production database would you like to use? (Use arrow keys)
> PostgreSQL


MySQL
MariaDB
Oracle
Microsoft SQL Server
CockroachDB




`
*Explanation* - Select the kind of database that you would want for the application in production environment. The selection from this stage would be available in the subsequent stages.
`
? Which development database would you like to use? (Use arrow keys)
> SQLite with disk-based persistence


SQLite with in-memory persistence
MySQL




`
*Explanation* - You have the option to use the embedded SQLite database for development or the database you selected to be used in production from the earlier stage
`
? Which cache do you want to use? (Use arrow keys)
> No cache


SimpleCache
FileSystem cache
Memcached
Redis




`
*Explanation* -
`
? Which Framework would you like to use for the client? (Use arrow keys)
> Angular


React
Vue
No client




`
*Explanation* - You are given a choice to select either Angular, React, or Vue for your frontend
`
? Do you want to generate the admin UI? Yes
`
*Explanation* - Choose "Yes" if you want to enable user management
`
? Would you like to use a Bootswatch theme (https://bootswatch.com/)? Default JHipster
```
Explanation - This will enable UI themes from Bootswatch. Please here to [Bootswatch](https://bootswatch.com/) for more details of available themes

After selecting the options, PyHipster will work to generate the Python and UI code based on your selections.

Once the application is generated, the tool will automatically install all the necessary Node modules.

![Installing Node Modules](images/node-modules-installed.png)

We will need 2 terminal/command prompts for running the frontend and backend components simultaneously.

Terminal 1 (Backend)
$> pvnw `` (Windows)
``$> ./pvnw (Linux/Mac)

Once the application is running, we will see the following messages on the terminal

![Flask Server Started](images/flask-server-started.png)

Terminal 2 (Frontend)
``$> npm start ``

Once the application is running, you will see the following messages.

![Flask Server Started](images/node-server-started.png)

PyHipster will open your default web browser and point to http://locahost:9000

![Frontend Running](images/running-application-ui.png)

Follow the onscreen instructions and login as “admin” or “user” and explore around.

Data Model Definition

The JDL is a JHipster-specific domain language where you can describe all your applications, deployments, entities and their relationships in a single file (or more than one) with a user-friendly syntax.
PyHipster reuses JDL for data model definition as well.

Please find more information abuout JDL [here](jdl.md)

Customizations

Database
The application can handle its embedded SQLite database. In you you selected the database type to be anything other than SQLite, you have to provide appropriate values to the below options in the file src/main/python/config/BaseConfig.py
`python
Database
SQLALCHEMY_DATABASE_URI = '...'
SQLALCHEMY_TRACK_MODIFICATIONS = False
PROPAGATE_EXCEPTIONS = False
`
Please refer to the [SQLAlchemy documentation](https://docs.sqlalchemy.org/en/14/dialects/index.html) for further details.
EMail
To configure your own email to work with the generated application, please go to the file src/main/python/config/BaseConfig.py and edit the following lines to the appropriate values
`python
Mail Configurations
MAIL_SERVER = 'smtp.gmail.com'
MAIL_PORT = 587
MAIL_USE_TLS = True
MAIL_USE_SSL = False
MAIL_USERNAME = 'my-email-id@gmail.com'
MAIL_PASSWORD = 'my-email-password'
`
Please note: If you use the above configuration with your Gmail password, you might need to [allow less secure apps](https://support.google.com/accounts/answer/6010255?hl=en). The configuration is simpler but less secure. Also by allowing less secure apps you won’t have the ability to use two factor authentication with Gmail. Therefore we highly recommend you use an app password instead of the Gmail password. Please refer to the Gmail configuration document at [Sign in with App Passwords](https://support.google.com/accounts/answer/185833) for more information on how to set this up.
Cache
To configure your cache to work with the generated application, please go to the file src/main/python/config/BaseConfig.py and supply values for the selected caching mechanism. For example, for Redis cache, you will have the following options to be customized.

`python
Cache Configurations
CACHE_TYPE = 'RedisCache'
CACHE_DEFAULT_TIMEOUT = 60
CACHE_KEY_PREFIX = ''
CACHE_REDIS_HOST = ''
CACHE_REDIS_PORT = 6379
CACHE_REDIS_PASSWORD = ''
CACHE_REDIS_DB = ''
CACHE_REDIS_URL = ''
`

Errors
OSError while using FileSystem cache
![FS Cache Error](images/cache_error.png)
Cause: This is caused by the filesystem not being accessible for writing to the caching library
Resolution:
- Go to src/main/python/config/BaseConfig.py
- Change the following line to any folder that the current user has write access
`python
CACHE_DIR = tempfile.gettempdir()
`

For example, /tmp (Linux) or C:\temp (Windows)

Tools
- [JHipster Studio](https://www.jhipster.tech/jdl-studio/) for writing JDL files
- [JWT token validator](https://www.jstoolset.com/jwt) for testing JWT tokens
- [BCrypt Tester](https://bcrypt.online/) for testing password generation and validation

 # JDL
Using files

You can use JDL files to generate entities:
- Create a file with the extension ‘.jh’ or ‘.jdl’,
- Declare your entities and relationships or create and download the file with [JDL-Studio](https://start.jhipster.tech/jdl-studio/)
- Then run pyhipster jdl my_file.jdl in your JHipster application’s root folder.

and _Voilà_, you are done!

If you work in a team, perhaps you would like to have multiple files instead of one. We added this option so that you don’t manually concatenate all the files into one, you have to run:

`
pyhipster jdl my_file1.jdl my_file2.jdl
`
Datatypes
The following data types are available in JDL

	String

	Integer

	Long

	BigDecimal

	Float

	Double

	Enum

	Boolean

	LocalDate

	ZonedDateTime

	Instant

	Duration

	UUID

	Blob

	AnyBlob

	ImageBlob

	TextBlob

Entity Definition
The entity declaration is done as follows:

```
entity <entity name> {


<field name> <field type> <validation>





}


	<entity name>  the name of the entity,


	<field name>  the name of one field of the entity,


	<field type>  the JHipster supported type of the field,


	<validation>  the validations for the field.




### Basic example

`jdl
entity A
`
This is equivalent to:
`jdl
entity A(a) {}
`
The former the simpler form, without specifying a “body” (braces for fields) and a table name.

```jdl
entity A {

name String
age Integer

}

	entity A {
	name String required
age Integer

}

Blob declaration

JHipster gives a great choice as one can choose between an image type or any binary type. JDL lets you do the same. Create a custom type (see DataType) with the editor, name it according to these conventions:

	AnyBlob or Blob to create a field of the “any” binary type;

	ImageBlob to create a field meant to be an image.

	TextBlob to create a field for a CLOB (long text).

And you can create as many DataTypes as you like.

Enumerations

Enumerations are types with fixed values:
```jdl
enum Type {


A,
B(b)




}
entity E {


name Type






}

Notice how enumeration’s values are optional.
They only have one validation:  required.

### Basic example
```jdl
enum Country {

BELGIUM,
FRANCE,
ITALY

}

And its use:

```jdl
enum Country {}
entity A {


country Country






}

## Relationships

Relationships between entities are also available and are declared with the  relationship  keyword.

```jdl
entity A
entity B

	relationship OneToOne {
	A{a} to B{b}

}

```
Here’s what we can see:
-   OneToOne  is the relationship type
-   we declare the source and the destination of the relationship (from  A  to  B)
-   we also declare the injected fields in each entity (a  in  B, and  b  in  A)

There are four relationship types:


	OneToOne


	OneToMany


	ManyToOne


	ManyToMany




### Multiple relationship bodies

If you’re tired of having  _n_  relationships of the same type in your JDL file, don’t worry! There’s a solution.

Take this JDL sample for instance:

```jdl
relationship OneToOne {

A to B

}
relationship OneToOne {

B to C

}
relationship OneToOne {

C to D

}
relationship OneToOne {

D to A

}

```

The solution consists in having every relationship body inside on relationship declaration, like this:

```jdl
relationship OneToOne {

A to B,
B to C,
C to D,
D to A

}

```

This syntax is really useful when:


	You have lots of relationships of the same type,


	You want to know what the relationships are,


	You don’t want to waste time looking for them in your JDL file(s)






### Syntax

Relationship declaration is done as follows:

```
relationship (OneToMany | ManyToOne | OneToOne | ManyToMany) {

<from entity>[{<relationship name>[(<display field>)]}] to <to entity>[{<relationship name>[(<display field>)]}]

}

	(OneToMany | ManyToOne| OneToOne | ManyToMany) is the type of your relationship,

	<from entity> is the name of the entity owner of the relationship: the source,

	<to entity> is the name of the entity where the relationship goes to: the destination,

	<relationship name> is the name of the field having the other end as type,

	<display field> is the name of the field that should show up in select boxes (default: id),

Examples

Basic example
```jdl
relationship OneToOne {


A to B






}

Note that this example is the same as:

```jdl
relationship OneToOne {

A{b} to B{a}

}

Not specifying an injected field is the short form of having a bidirectional relationship.

Another example:

```jdl
relationship OneToOne {


A{b} to B




}

```

This will generate a unidirectional relationship. You can only find entity B through entity A, but you cannot find entity A through entity B.

With injected fields

```jdl
relationship ManyToMany {


A{b} to B{a}




}

```

This is a bidirectional relationship, meaning that both entities will be generated with an “instance” of the other entity.

Commenting
Commenting Entities
Commenting is possible in the JDL for entities and fields, and will generate documentation (Javadoc or JSDoc, depending on the backend).

```jdl
/**



	This is a comment


	about a class


	@author Someone




*/





	entity A {
	
	/**
	
	This comment will also be used!


	@type…




*/
name String
age Integer // this is yet another comment











}

The JDL possesses its own kind of comment:


	// an ignored comment




Therefore, anything that starts with  //  is considered an comment for JDL. Please note that the JDL Studio directives that start with  #  will be ignored during parsing.

Please note, commas are not mandatory but it’s wiser to have them so as not to make mistakes in the code.

#### Commenting

Adding comments for relationships is possible:

```jdl
relationship OneToOne {

/** This comment will be put before b in entity A*/
A{b}
to
/** This comment will be put before a in entity B*/
B{a}

}

The same commenting rules as entities are applied here.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

